Magnesia carbon bricks are a composite refractory material. It effectively utilizes the strong resistance to slag erosion of magnesia and the high thermal conductivity and low expansion of carbon. In addition, its use makes up for the shortcomings of magnesia’s poor resistance to peeling.
Item/Grade | Apparent Porosity/% | Bulk Density (g/cm³) | Cold Crushing Strength/MPa | High-temperature Bending Strength (1400℃*0.5h)/MPa | ω (MgO)/% | ω (C)/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
μ0 ≤ | σ | μ0 ≥ | σ | μ0 | σ | μ0 ≥ | σ | μ0 ≥ | σ | μ0 ≥ | σ | |
MT-5A | 5.0 | 1.0 | 3.10 | 0.05 | 50.0 | 10.0 | / | / | 85.0 | 1.5 | 5.0 | 1.0 |
MT-5B | 6.0 | 1.0 | 3.02 | 0.05 | 50.0 | 10.0 | / | / | 84.0 | 1.5 | 5.0 | 1.0 |
MT-5C | 7.0 | 1.0 | 2.92 | 0.05 | 45.0 | 10.0 | / | / | 82.0 | 1.5 | 5.0 | 1.0 |
MT-5D | 8.0 | 1.0 | 2.90 | 0.05 | 40.0 | 10.0 | / | / | 80.0 | 1.5 | 5.0 | 1.0 |
MT-8A | 4.5 | 1.0 | 3.05 | 0.05 | 45.0 | 10.0 | / | / | 82.0 | 1.5 | 8.0 | 1.0 |
MT-8B | 5.0 | 1.0 | 3.00 | 0.05 | 45.0 | 10.0 | / | / | 81.0 | 1.5 | 8.0 | 1.0 |
MT-8C | 6.0 | 1.0 | 2.90 | 0.05 | 40.0 | 10.0 | / | / | 79.0 | 1.5 | 8.0 | 1.0 |
MT-8D | 7.0 | 1.0 | 2.87 | 0.05 | 35.0 | 10.0 | / | / | 77.0 | 1.5 | 8.0 | 1.0 |
MT-10A | 4.0 | 0.5 | 3.02 | 0.03 | 40.0 | 10.0 | 6.0 | 1.0 | 80.0 | 1.5 | 10.0 | 1.0 |
MT-10B | 4.5 | 0.5 | 2.97 | 0.03 | 40.0 | 10.0 | / | / | 79.0 | 1.5 | 10.0 | 1.0 |
MT-10C | 5.0 | 0.5 | 2.92 | 0.03 | 35.0 | 10.0 | / | / | 77.0 | 1.5 | 10.0 | 1.0 |
MT-10D | 6.0 | 0.5 | 2.87 | 0.03 | 35.0 | 10.0 | / | / | 75.0 | 1.5 | 10.0 | 1.0 |
MT-12A | 4.0 | 0.5 | 2.97 | 0.03 | 40.0 | 10.0 | 6.0 | 1.0 | 78.0 | 1.2 | 12.0 | 1.0 |
MT-12B | 4.0 | 0.5 | 2.94 | 0.03 | 35.0 | 10.0 | / | / | 77.0 | 1.2 | 12.0 | 1.0 |
MT-12C | 4.5 | 0.5 | 2.92 | 0.03 | 35.0 | 10.0 | / | / | 75.0 | 1.2 | 12.0 | 1.0 |
MT-12D | 5.5 | 0.5 | 2.85 | 0.03 | 30.0 | 10.0 | / | / | 73.0 | 1.2 | 12.0 | 1.0 |
MT-14A | 3.5 | 0.5 | 2.95 | 0.03 | 38.0 | 10.0 | 10.0 | 1.0 | 76.0 | 1.2 | 14.0 | 1.0 |
MT-14B | 3.5 | 0.5 | 2.90 | 0.03 | 35.0 | 10.0 | / | / | 74.0 | 1.2 | 14.0 | 1.0 |
MT-14C | 4.0 | 0.5 | 2.87 | 0.03 | 35.0 | 10.0 | / | / | 72.0 | 1.2 | 14.0 | 1.0 |
MT-14D | 5.0 | 0.5 | 2.81 | 0.03 | 30.0 | 10.0 | / | / | 68.0 | 1.2 | 14.0 | 1.0 |
MT-16A | 3.5 | 0.5 | 2.92 | 0.03 | 35.0 | 8.0 | 8.0 | 1.0 | 74.0 | 1.2 | 16.0 | 0.8 |
MT-16B | 3.5 | 0.5 | 2.87 | 0.03 | 35.0 | 8.0 | / | / | 72.0 | 1.2 | 16.0 | 0.8 |
MT-16C | 4.0 | 0.5 | 2.82 | 0.03 | 30.0 | 8.0 | / | / | 70.0 | 1.2 | 16.0 | 0.8 |
MT-18A | 3.0 | 0.5 | 2.89 | 0.03 | 35.0 | 8.0 | 10.0 | 1.0 | 72.0 | 1.2 | 18.0 | 0.8 |
MT-18B | 3.5 | 0.5 | 2.84 | 0.03 | 30.0 | 8.0 | / | / | 70.0 | 1.2 | 18.0 | 0.8 |
MT-18C | 4.0 | 0.5 | 2.79 | 0.03 | 30.0 | 8.0 | / | / | 69.0 | 1.2 | 18.0 | 0.8 |
High-quality magnesium carbon bricks composition are usually composed of high-purity magnesia and carbon. Additionally, refractory brick manufacturers make it through mixing, pressing and high-temperature calcination. Therefore, its excellent performance makes it widely used in industrial fields.
Magnesia carbon bricks are widely used in high-temperature environments that require fire resistance, wear resistance and corrosion resistance in industry, mainly including:
Iron and steel smelting equipment: used as a blast furnace lining, converter lining plate and slag line of ladle. It can withstand the erosion of high temperature and corrosive gases and protect the furnace body from damage.
Look for reputable refractory fire brick manufacturers with a track record of producing high-quality products. Moreover, these refractory bricks manufacturers typically employ strict quality control measures to ensure consistent performance and reliability.
You can also seek advice from industry professionals, consultants or colleagues with experience with magnesia carbon bricks. Or you can contact Kerui directly for free help. Their insights can help you identify vendors known for delivering high-quality products.
Explore online platforms dedicated to refractory materials, such as the official websites of Alibaba and Kerui. Kerui offers a wide selection and detailed product specifications, allowing you to compare and select high-quality fire proof bricks.
Attend industry-specific trade shows where refractory manufacturers showcase their products. It provides the opportunity to interact directly with suppliers, learn about their manufacturing processes and evaluate the quality of their refractory materials.
As the core components of refractory material, the quality of magnesia and carbon is crucial. Kerui magnesia carbon bricks use high-purity raw materials, carefully selecting high-quality electric magnesium ore and high-purity magnesium oxide. In addition, we also use finely processed high-quality natural graphite or synthetic carbon materials. Therefore, we guarantee the stability and fire resistance of magnesia carbon bricks.
Through advanced production technology and strict quality control, Kerui maintains consistently high standards in the magnesite carbon bricks manufacturing process. Moreover, from raw material processing to finished product processing, every step of Kerui has been carefully designed and strictly monitored. So, we can ensure the excellent performance of magnesite carbon bricks and insulation bricks.
Through close cooperation with customers and continuous market research, Kerui is able to provide customized solutions for different industries and fields. We can meet the specific needs of our customers and continuously improve and optimize product performance to adapt to changing market needs. Besides, you can also find us on Twitter or leave a message directly in the message box to get free technical support.
By purchasing Kerui’s high-performance magnesia carbon bricks or insulating refractories, you can save long-term costs in equipment operation to a great extent. Besides, if you have questions about the physical and chemical indicators of magnesia carbon refractory, please contact us for free consultation.